Sanjay Ghodawat University Kolhapur

School of Engineering & Technology Department of Civil Engineering

B. Tech. Civil Engineering (Third Year)

Curriculum Book

(Programme Structure and Course Contents)

Academic Year 2024 - 25

School of Technology **Department of Civil Engineering** Program: T.Y.B. Tech. Civil Engineering

Sanjay Ghodawat University, Kolhapur Established as a State Private University under Govt. of Maharashtra Act no. XL dated 3rd May 2017

Empowering Lives Globally !

A.Y. 2024 - 25

THIRD YEA	AR				A.Y. 2024	4 - 25				
	Semester V									
Course		C		Evaluation Scheme						
Code	Course Title	C	Component	Exam	Wt %	Min. Passing %				
UCE501	Design of Steel Structures	4	Theory and	FET	50	40				
(PC)	Design of Steel Structures	4	Practical	ESE	50	40				
UCE502	Environmental Engineering	4	Theory and	FET	50	40				
(PC)	Environmental Engineering	4	Practical	ESE	50	40				
UCE503	Foundation Engineering	4	Theory and	FET	50	40				
(PC)	Foundation Engineering	4	Practical	ESE	50	40				
UCE-X	Drogram Floating I	4	Theory and	FET	50	40				
(PE-II)	Frogram Elective – I	4	Practical	ESE	50	40				
LIOE V	Uni. Open Elective-I	4	Theory and	FET	50	40				
UUE-A		4	Practical	ESE	50	40				
NCMC	Industrial Safety Training	-	Practical	FEP	100	40				
		20		1	Total Credits:20	0				

	Program Elective – I
UCE551	Advanced Building Materials
UCE552	Numerical Methods

University Open Elective I						
Course Code	Course title					
UOE551	Renewable Energy (Mech)					
UOE 552	Water Power Engineering (Civil)					
UOE 553	Fundamental of Aeronautical Engineering (Aero)					
UOE 554	Internet of Things (Elec)					

	Semester VI							
Course		C	Evaluation Scheme					
Code	Course Title		Component	Exam	Wt %	Min. Passing %		
UCE601	Construction Management	4	Theory and	FET	50	40		
(PC)	Construction Management	4	Practical	ESE	50	40		
UCE602	Design of Congrete Structures	4	Theory and	FET	50	40		
(PC)	Design of Concrete Structures	4	Practical	ESE	50	40		
UCE603	Design of Steel Structures Lab	4	Theory and	FET	50	40		
(PC)	and Software Proficiency Lab	4	Practical	ESE	50	40		
UCE-X	Drogram Floative II	4	Theory and	FET	50	40		
(PE-IV)	Program Elective-II	4	Practical	ESE	50	40		
LIOE V	Uni. Open Elective II	4	Theory and	FET	50	40		
UUE -A		4	Practical	ESE	50	40		
(NCMC)	Creativity and Innovations	NC	Practical	FEP	100	40		
20 Total Credits:20								

Program Elective – II						
UCE651	Advanced Fluid Mechanics					
UCE652	Advanced Surveying					
UCE653	Site Investigation and Soil Exploration					
UCE654	Computational Fluid Dynamics					

University Open Elective II						
Course title	Course title					
UOE651	Total Quality Management (Mech)					
UOE 652	Construction Project Management (Civil)					
UOE 653	Flying Vehicle Aerodynamics (Aero)					
UOE 654	Automotive Electronics (Elec)					

School of Technology Department of Civil Engineering Program: T.Y.B. Tech. Civil Engineering

Sanjay Ghodawat University, Kolhapur Established as a State Private University under Govt. of Maharashtra Act no. XL dated 3rd May 2017 Empowering Lives Globally !

Contents

Design of Steel Structures	4
Environmental Engineering	7
Foundation Engineering	9
Advanced Building Material	13
Numerical Methods	16
Construction Management	19
Design of Concrete Structures	21
Design of Steel Structure and Software Proficiency Lab	23
Advanced Fluid Mechanics	26
Site Investigation and Soil Exploration	28

Course Code	Course Title
UCE501	Design of Steel Structures
001301	(Program Core School of Technology)

T	т	Р	Credits		Evalua	tion Schen	ne	
L	L		Creans	Component	Exam	WT (%)	Mini.	Passing %
2		1	4	Theory and	FA	50	40%	400/
3	-	I	4	Practical	SA	50	40%	40%

Course Description:									
This	includes	structural	behavior	of	steel	member	subjected	to	different
nature of force (Axial tension, axial compression, flexural and moving loads etc.). Analysis and									
design of end connections may be bolted or welded for each structural steel element. Also, in this									
course	study of str	ructural beha	vior of steel	mem	ber beyo	ond the elast	tic limit.		

Course	Course Learning Outcome(s)						
At the e	nd of this course students will able to:						
CLO1	Explain ² behavior of structural steel elements and the design philosophies and Analyze ⁴ and design ⁵ bolted and welded connections is steel structures						
CLO2	Analyze ⁴ and design ⁵ of structural steel tension, compression members						
CLO3	Analyze ⁴ and design ⁵ column and column bases						
CLO4	Analyze ⁴ and design ⁵ beams and gantry girder and plastic analysis of steel member						

UNIT	DESCRIPTION	HOURS
Ι	Introduction to Design of steel structures: a) Design Philosophy, comparison	6
	of LSM & WSM, advantages and disadvantages of steel structures, types of steel	
	structures, grades of structural steel, various rolled steel sections, loads and load	
	combinations partial safety factors for load and materials, load calculation for	
	roof trusses	
	Types of bolts & welds, analysis and Design of axially and eccentrically loaded	
	bolted and welded connections (subjected to bending and torsion)	
1		

II	Tension Members: Common sections, Net area, modes of failure, load carrying	6			
	capacity, Design of axially loaded tension members, Design of end connections				
	(Bolted and welded)				
III	Compression Members as Struts: Common sections, economical sections,	6			
	effective length, slenderness ratio, modes of failure, classification of cross				
	section, behavior of compression member, load carrying capacity, Design of				
	compression members.				
IV	Columns: Design of column subjected to axial and eccentric loading, design of	6			
	lacing, battening system, column splices,				
	Column Bases Design of slab bases & gusseted base subjected to axial and				
	eccentric load and design of concrete pedestal				
V	Beams: Types of sections, behavior of beam in flexure, design of laterally	6			
	supported, unsupported beams and built-up beam using flange plates, curtailment				
	of flange plates, check for deflection, shear, web buckling & web crippling.				
	Secondary and main beam arrangement, beam to beam connections				
	Gantry girder: Forces acting on gantry girder, commonly used sections, design				
	of gantry girder as laterally unsupported beam, connection details				
VI	Plastic Analysis: Plastic analysis of steel structures, shape factor, plastic hinge,	6			
	collapse mechanism,' upper bound theorem and lower bound theorems,				
	application to continuous beam, single bay single storied rectangular frame				

	Laboratory Work
1	Three numerical/design-based assignment on each unit
	Text Books
1	Dr. M. R. Shiyekar, Limit state design in structural steel, PHI publications.
2	S.S. Bhavikatti, Design of steel structure by Limit State Method as per IS: 800-2007, I K International Publishing House, New Delhi.
	References
1	K.S. Sairam, Design of Steel Structures, Pearson
2	S.K. Duggal, Limit State Design of Steel Structures, Tata Mc-Graw Hill India Publishing House

3	N.Subramanian, Design of steel structures, Oxford University Press
4	S. Ramamrutham, Design of Steel structures, Dhanapat Rai, Publication

Course Code	Course Title
UCE502	Environmental Engineering
	(Program Core School of Technology)

Т	т	р	Credits		Evalua	tion Schem	ıe		
L	I	I	Creats	ComponentExamWT (%)Mini. Passing		Passing %			
2		0	4	Theory	FA	50	40%	400/	
3	-	2	4	and Practical	SA	50	40%	40%	

Course Description:

This course provides knowledge about water supply Engineering and sanitary engineering. It also focuses on the design of water treatment and waste water treatment plant units.

Course]	Course Learning Outcome(s)					
At the e	nd of this course students will able to:					
CLO1	Describe ³ the various sources of water with respect to quality and quantity of water.					
CLO2	Describe ⁴ and design the various water treatment units.					
CLO3	Explain ³ sources, characteristics and methods of wastewater collection.					
CLO4	Design ⁴ the primary and secondary wastewater treatment units.					

UNIT	DESCRIPTION	HOURS
I	Sources of water, demand of water, factors affecting demand, fluctuations in demand, rate of water consumption, design period & population forecast. Water quality parameters, drinking water quality standards- BIS, WHO Standard	6
Π	water treatment process: Aeration, Coagulation & Flocculation, Sedimentation- types of sedimentation tanks, Filtration, Types of filters, Multimedia & Pressure filter, Disinfection- methods of disinfection	6
III	Water distribution systems, method of distributing water, layout pattern, Water supply appurtenances, maintenance & leak detection of water distribution system.	6

IV	Wastewater: Components of wastewater flows, wastewater sources and flow rate, Variations inflow rates and strength, wastewater constituents, Characteristic of Municipal waste water, Sewerage system	6
V	Primary Treatment: Screening, comminuting, Grit removal, Oil and Grease trap Primary settling tank. Secondary Treatment: Activated sludge process, Process design and operating parameters, modification of ASP, Concept of trickling filter, Secondary	6
VI	Sludge: Characteristics, Treatment and disposal, Stream pollution: Classification, Concept of Self Purification and DO sag curve. Disposal of wastewater: methods, effluents standards for stream and land disposal as per MPCB and Concept of environmental impact assessment.	6

	Laboratory Work
1	One assignment on each unit
	Text Books
1	Peavey, H. S. Rowe, D.R., Environmental Engineering, McGraw-Hill Book
2	Viessman W. and Hammer M.J. Water supply and pollution Control, Harper
3.	Water Supply Engineering by S. K. Garg, Khanna Publishers, New Delhi
4.	Water Supply Engineering by Dr. B. C. Punmia, Laxmi Publishers, New Delhi
	References
3	Water Supply Engineering by Dr. P. N. Modi, Standard Book House, New Delhi
2	Waste water Engineering, P. N. Modi.
3	Viessman W. and Hammer M.J. Water supply and pollution Control, Harper
4	Prestressed concrete-Sinha & Roy S.Chand & Co. New Delhi

Course Code

UCE503

Sanjay Ghodawat University, Kolhapur Established as a State Private University under Govt. of Maharashtra Act no. XL dated 3rd May 2017 Empowering Lives Globally !

Course Title

Foundation Engineering

(Program Core | School of Technology)

Т	т	р	Cradits	Evaluation Scheme					
L	I	ł	Creatis	Component	Exam	WT (%)	Mini.	Passing %	
2		0	4	Theory	FA	50	40%	400/	
3	-	2	4	and Practical	SA	50	40%	40%	

Course Description:

The course will focus on the design of shallow foundation and axially loaded pile foundation. The field and laboratory soil testing methods will be discussed to determine the required design parameters. Lateral earth pressures theories and design of various retaining structures will be covered. The selection of proper foundation or characteristics of foundations for different soils will be discussed.

Course	Course Learning Outcome(s)					
At the e	nd of this course students will able to:					
CLO1	Identify ² the investigation plan to explore the subsurface					
CLO2	Define² and calculate³ load bearing capacity by using different classical theories					
CLO3	Discuss³ different types of shallow foundations and design those. Predict the possible settlement of foundations					
CLO4	Explain ² well foundation, caissons, sheet piles and coffer dams					

UNIT	DESCRIPTION	HOURS
Ι	Necessity, Planning, No & depth of bore holes, Exploration Methods(auger	6
	boring (hand and continuous flight augers), and wash boring, rotary drilling.	
	Soil sampling (disturbed and undisturbed)	
Π	Definitions, Modes of failure, Terzaghi's bearing capacity theory, I.S. Code	6
	method of bearing capacity evaluation & computation (IS 6403), Effect of	
	various factors on bearing capacity(Size & Shape, Depth, WT, Eccentricity),	

		T
	Bearing capacity evaluation from Plate load test, S.P.T. (By I.S. Code method)	
	and pressure meter tests with detailed procedure	
III	Types and their selection, minimum depth of footing, Assumptions &	6
	limitations of rigid design analysis. Design of Isolated, combined, strap,	
	footing (Rigid analysis), Raft foundation (elastic analysis), floating	
	foundations (R.C.C. Design is not expected)	
	Foundation Settlement: computations from I.S. 8009 (1976 (Part I) approach,	
	consolidation, Settlement computations, Concept of total settlement,	
	differential settlement and angular distortion	
IV	Classification and their uses, single pile capacity evaluation bystatic and	6
	dynamic methods, pile load test. Negative skin friction, Group action piles,	
	spacing of piles in a group, Group efficiency. Under reamed piles – equipment,	
	construction and precautions	
V	Element of wells, types, methods of construction, tilt and shift, remedial	6
	measures, Pneumatic caissons: sinking method (Sand island method, Caisson	
	disease. Types and material used for sheet piling, Common types of	
	cofferdams, Soil pressure distribution, Braced cofferdam	
	-	
VI	Slope classification, slope failure, modes of failure. Infinite slope in cohesive	6
	and cohesion less soil, Taylor's stability number, Swedish slip method and	
	concept of Friction circle method, Landslides	

	Laboratory Work
1	One assignment on each unit
	Text Books
1	K. R. Arora, "Soil Mechanics and Foundation Engineering" Standard Publication.
2	Punmia, B. C., Jain A. K., and Jain A. K Soil Mechanics and Foundations, Laxmi Publications.
	References

1	Alam Singh, "Text book of soil mechanics in theory and practice" Asian Publishing
	House, Bombay.
2	N. S. Murthy, "Soil mechanics and Foundation engineering" by V., U. B. S. Publishers
	and distributors New Delhi.
4	P. Purushottam Raj, "Geotechnical Engineering", Tata Mcgraw Hill Company Ltd. New
	Delhi

Program Elective I

Sanjay Ghodawat University, Kolhapur Established as a State Private University under Govt. of Maharashtra Act no. XL dated 3rd May 2017

Empowering Lives Globally !

Course Code	Course Title
UCE551	Advanced Building Material
	(Program Core School of Technology)

Т	т	гр	P Credite	Evaluation Scheme				
L	1	I	Creatis	Component Exam WT (%) Min		Mini.	i. Passing %	
2		0	4	Theory	FA	50	40%	400/
3	-	2	4	and Practical	SA	50	40%	40%

Course Description:

This is a mainly practical course aimed to get knowledge of Advanced Building Material and areas within engineering.

Course	Course Learning Outcome(s)					
At the e	nd of this course students will able to:					
CL01	Acquire ² skills in basic engineering practices (Use of different types of machines, tools and equipment)					
CLO2	Identify various building materials according to their requirements and applications					
CL03	Select various building materials according to use, site specifications and available market forms and sizes, colour, etc					
CLO4	Apply various building materials according to use, site specifications					

UNIT	DESCRIPTION	HOURS
Ι	1.1 Factors affecting the selection of floor	6
	finishes	
	1.2 Types of flooring and their uses, Wood - Strip flooring, block flooring,	
	Timber board, Timber Sheet, etc Tiles – Vitrified, Mosaic, Ceramic, Linoleum,	
	Thermoplastic tiles, Flexible PVC Tiles, Cork, tiles, quarry tiles, rubber tiles	
	Terrazzo, marble finish, IPS, Kota, Granite, Cement Concrete Tile, Asbestos tile	
	1.3 Requirements and uses of the following types of wall finishes.	
	Materials: 1. Wall papers	

	2. Cement mortar plaster 3. Tiles 4. Gypsum plaster 5. Stucco plaster 6. Special	
	External Finishes for plaster surface • Rough cast • Smooth cast • Barium plaster	
II	Requirements & uses of the following	6
	ceiling materials:	
	1. Ply wood 2. Hard board 3. Plain A.C. Sheet 4. Fiber board 5. Asbestos tiles	
	6. Glass roof tiles 7. Thermocole sheets 8. Gypsum plaster board	
	9. Sprayed plaster 10. Fiber Glass	
	2.2 Standard sizes, uses & their	
	requirements:	
	1. G.I. Sheet 2. Mangalore tiles 3. Acrylic Sheet 4. PVC Sheet	
III	3.1 Types, sizes & uses of building fixtures	6
	and hardware as per ISI.	
	1. Tower bolt 2. Hinges 3. Door handles 4. Door springs & Floor springs	
	5. Latches 6. Aldrop 7. Floor door stopper 8. Locks 9. Door closer	
	10. Patch Fittings (all fittings for glass) 11. Wire mesh (mosquito & fly proof)	
	12. Magic eye (eye hole)	
	3.2 Painting and Objectives for painting	
	3.3 Characteristics of an ideal paint	
	3.4 Ingredients of an oil borne paint	
	3.5 Types, Requirement & uses	
	1. Aluminiun Paint 2. Anti Corrosive Paint 3. Cellulose Paint	
	4. Cement Paint 5. Emulsions 6. Oil Paints	
	7. Water based paints 8. Plastic Paints 9. Synthetic Rubber Paint	
	10. Silicate Paint 11. Enamel Paint	
	3.6 Failure of paint.	
	3.7 Defects in Painting	
	3.8 Varnishing & its objectives	
	3.9 Characteristics of an ideal Varnish.	
	3.10 Ingredients of a varnish.	
	3.11 Types of varnishes, Requirement &	
	uses of different types of varnishes	

Sanjay Ghodawat University, Kolhapur Established as a State Private University under Govt. of Maharashtra Act no. XL dated 3rd May 2017

Empowering Lives Globally !

IV 4.1 Roofing Tiles 6 4.2 Earthenware products 4.3 Stoneware products 4.4 Terra cotta and other clay wares, porcelain 4.5 Asbestos cement sheets 4.6 A.C. Pipes 4.7 Cement hollow blocks, cement grills (jalis) & decorative post for railing V 5.1 Steel - Properties, uses of different 6 types of Steel (1) C.I.(2) W.I.(3) M.S. 5.2 Different forms of M.S. Sections. 5.3 Various categories of steel. 5.4 Advantages of Tor Steel over Mild Steel (M.S) VI 6.1 Aluminum 6 6.2Properties & uses of Aluminum 6.3Aluminum alloys- Properties & uses 6.4 Different market forms of Aluminum

	Laboratory Work
1	One assignment on each unit
	References
1	Engineering Materials (Material Science) S.C Rangwala Charotar Publications, Anand
2	Building Construction B.C.Punmia Laxmi Publications Pvt Ltd.
	Indian Architect & Builder Magazine/Journal Jasubhai Media Publications Ltd,

Course Code

UCE552

Sanjay Ghodawat University, Kolhapur Established as a State Private University under Govt. of Maharashtra Act no. XL dated 3rd May 2017 Empowering Lives Globally !

Course Title

Numerical Methods

(Program Core | School of Technology)

Т	т	т	р	р	Credits		Evalua	tion Schem	ie	
L	L	1	Creatis	Component Exam WT (%) Mini. P		Passing %				
2		0	4	Theory	FA	50	40%	400/		
3	-	2	4	and Practical	SA	50	40%	40%		

Course Description:

This course is a basic course offered to UG student of Civil Engineering. It contains solution of system of linear equations, roots of non-linear equations, interpolation, numerical differentiation and integration. It plays an important role for solving various civil engineering problems. Therefore, it has tremendous applications in diverse fields in civil engineering.

Course Learning Outcome(s)				
At the e	nd of this course students will able to:			
CL01	Discuss ² various aspects of MATAB/Scilab and their utility as tool in coding various numerical methods.			
CLO2	Calculate ³ roots of the equation			
CLO3	Solve ² linear algebric equations			
CLO4	Discuss ² curve fitting, numerical integration			

UNIT	DESCRIPTION	HOURS
Ι	Introduction: Mathematical modeling in engineering problem solving,	6
	approximations and different types of errors, Taylor series, introduction to	
	MATLAB programming, introduction to Scilab	
II	Roots of Equations: Roots of algebraic and transcendental equations: Bracketing	6
	methods - bisection method, false position, Open methods - Newton Raphson,	
	application: Analysis of electrical circuits using above methods.	

III	Linear Simultaneous Algebraic Equations: Cramer's rule, Gauss elimination – pit	6
	falls and remedies, Gauss-Seidal, Gauss-Jordan method, Newton Raphson	
	method. Introduction to eigen value and eigen vectors and iterative method to	
	estimate the m application: solving resistive networks.	
IV	Curve Fitting: Interpolation - Newton's polynomial, Lagrange polynomial	6
V	Numerical Integration and Differentiation: [04 Hrs] [02 Hrs] Integration: Newton-	6
	Cotes formulae - Trapezoidal rule, Simpson's Rule, application: calculation of	
	RMS values.	
VI	Ordinary Differential Equations: Euler's method, Modified Euler's method,	6
	Runge-kutta methods.	

	Laboratory Work
1	One assignment on each unit
	Text Books
1	Numerical Methods In Engineering & Science, by BS Grewal, Khanna Publishers, New
	Delhi, India.
2	
	References
1	Steven Chapra, Raymond P. Canale, "Numerical Methods for Engineers", McGrawHill
	International Student Edition.
2	Santosh K. Gupta, "Numerical Methods for Engineers", Wiley Eastern.
3	S. S. Sastry, "Numerical Methods", Prentice Hall of India, New Delhi (3rd edition)
4	Rudra Pratap, "MATLAB Programming" Tata McGraw Hill, NewDelhi.

Semester VI

Sanjay Ghodawat University, Kolhapur Established as a State Private University under Govt. of Maharashtra Act no. XL dated 3rd May 2017

Empowering Lives Globally !

Course Code	Course Title
UCE601	Construction Management
	(Program Core School of Technology)

L	Т	P C	Cradits	Evaluation Scheme				
			Creatis	Component	Exam	WT (%)	Mini.	Passing %
2		1	4	Theory	FA	50	40%	400/
3	-	1	4	and Practical	SA	50	40%	40%

Course Description:

This course will cover the basic concepts in construction management with a focus on construction projects. The Pre-requisites of this course are Basic Mathematics with Probability and Statistics.

Course	Course Learning Outcome(s)			
At the e	At the end of this course students will able to:			
CLO1	Explain importance management in construction field			
CLO2	Apply the knowledge Quantitative Techniques, quality management and safety management in civil engineering field			
CLO3	Apply the knowledge of engineering economy in civil engineering field			
CLO4	Explain importance of material and resources management			

UNIT	DESCRIPTION	HOURS
Ι	Introduction To Management: Principles of Management (Henry Fayol), Functions	6
	of Management: Planning- Organizing , Staffing Directing Supervision,	
	Coordination, Communication, Motivation, Leading Controlling -Decision Making:	
	Process, introduction to decision tree	
II	Quantitative Techniques: Linear Programming – Simple LP model, Graphical	6
	Method, Simplex Method (Concept Only), Transportation Problem, optimality test,	
	Assignment Model. (Balanced and Unbalanced problem), Sensitivity Analysis	
	(Concept Only)	
III	Safety management: Introduction, causes of accidents, costs of accidents, safety	6

	health management, safety audit, PPE, Workman's Compensation act, Child Labour	
	act, Minimum Wages Act.	
IV	Engineering Economics: Importance, Time Value of Money, Equivalence Cash	6
	flow diagram, types of interest, Economic Comparison Methods: Present Worth	
	Method, EUAC method, , Net Present Value, Rate of Return, Benefit- Cost Ratio,	
	Payback Period Method, Capitalized Cost method and Linear Break Even Analysis	
V	Material Management :- Objectives, need for Inventory Control, EOQ Analysis,	6
	ABC analysis, Safety Stock, Purchase Procedure, Stores Record, site layout, Factor	
	Affecting site layout	
VI	Quality Management: Importance, Dimensions of quality, Concept of QA, QC,	6
	Quality Circle. Sampling and Testing, QMS- purpose. Work study concept.	

Laboratory Work

- 1 At least two assignment on each unit
- 2 Visit Report regarding safety management on site
- 3 Visit Report regarding site lay out.
- 4 Prepare Site layouts for
- a) Multi storey building b) Dams project c) Bridge project
- 5) Visit Report on material management on site

Text Book

1. Chitkara, K.K. Construction Project Management: Planning, Scheduling and Control, McGraw Hill Publishing Company, New Delhi, 1998.

References

1. Halpin, D. W., Financial and Cost Concepts for Construction Management, John Wiley & Sons, New York, 1985.

2. Calin M. Popescu, Chotchai Charoenngam, Project Planning, Scheduling and Control in

Construction: An Encyclopedia of terms and Applications, Wiley, New York, 1995

3. Jha, Kumar Neeraj., Construction Project management, Theory & Practice, Pearson Education India, 2015.

4. Engineering Economics – Layland Blank and Torquin.

Course Code	Course Title
UCE602	Design of Concrete Structures (Program Core School of Technology)

L	Т	Р	Cradits	Evaluation Scheme				
			Creatis	Component	Exam	WT (%)	Mini.	Passing %
2		1	4	Theory	FA	50	40%	400/
3	-	1	4	and Practical	SA	50	40%	40%

Course Description:

This course provides knowledge about different types of RC element design. The course shall be taught using a combination of lectures, interactive tutorials. This course focuses on the principles of design of Beam, column, slab, footing, staircase etc. It also focuses on the analysis, design and construction aspects of RC building elements.

Course	Course Learning Outcome(s)			
At the e	nd of this course students will able to:			
CLO1	Extend ³ the concept shear, bond, development length and design the shear reinforcement			
CLO2	Analyze ⁴ and design ⁵ of the reinforced concrete beam sections.			
CLO3	Design ⁵ of RCC slab, column, footing.			
CLO4	Analyze ⁴ and design ⁵ of the prestressed concrete beam sections.			

UNIT	DESCRIPTION	HOURS
Ι	Introduction- Stress strain behavior of concrete and steel, Behavior of RCC,	6
	states Characteristics strength and Characteristic load Load factor Partial	
	safety factors. Concept -Limit state of collapse (shear and bond): Shear failure,	
	Types of Shear reinforcement, Design of Shear reinforcement, Bond-types,	
	Factors affecting bond Resistance, Check for development length.	
II	Limit state of collapse (flexure): Analysis and Design of Singly and Doubly	6
	Reinforced rectangular sections, concept -Singly reinforced T and L beams.	

III	Design of slabs: One way, two way with different support conditions as per	6
	IS:456, Cantilever slab.	
IV	Analysis and Design of axially loaded column introduction of eccentrically (uni- axial & biaxial) loaded circular and rectangular columns, Introduction of Interaction diagram, Circular column with helical reinforcement.	6
V	Design of isolated rectangular column footing with constant depth subjected to axial load and moment, Introduction to Design of combined rectangular footing.	6
VI	Introduction of prestress concrete, Advantage and disadvantages of prestress. Methods of prestressing, Analysis of simple pre-stressed rectangular section.	6

	Laboratory Work
1	One numerical/design-based assignment on each unit
	Text Books
1	Fundamentals of Reinforced Concrete. Sinha and Roy, S. Chand and company Ltd. Ram
	Nagar, New Delhi.
2	Limit state theory and Design of concrete structure -Karve and Shah Structures
	publications, Pune
	Reinforced Concrete Design Limit state - brothers Roorkee - A.K. Jain Nemchand
	brothers Roorkee.
	Prestressed concrete-T.Y.Lin john willey & sons Newyark
	References
1	Limit State Design of reinforced concrete, P.C.Varghese Prentice
	Hall, New Delhi.
2	Reinforced Concrete Design by B.C. Punmia Mcmillan India Ltd.
	New Delhi
3	Special publications -16 Bureau of Indian standards
4	IS 456-2000 Bureau of Indian standards
5	Prestressed concrete- N. Krishnaraju, Tata McGraw-Hill Publications
6	Prestressed concrete-Sinha & Roy S.Chand & Co. New Delhi

Course Code	Course Title
UCE603	Design of Steel Structure and Software Proficiency Lab
	(Program Core School of Technology)

T	т	р	Cradits		Evalua	tion Schem	e	
L			Creatis	Component	Exam	WT (%)	Mini.	Passing %
		4	2	Theory	FA	100	40%	400/
-	-	4	2	and Practical			40%	40%

Course Description:

This course requires the student to know about the basic of civil engineering, structural analysis, force, loads acting on structure, structural design procedure etc.

Course Learning Outcome(s)			
At the e	nd of this course students will able to:		
CLO1	Analyse ⁴ and design ⁵ of truss, gantry girder and Bracket		
CLO2	Analyse ⁴ and design ⁵ of column and column bases		
CLO3	Draw ¹ detail drawing of design structure using Auto cad		
CLO4	Analyse ⁴ and design ⁵ plate girder or steel building frame		

PROJECT	DESCRIPTION	HOU RS
	Project: The students are expected to Analyze and design the following steel structures and submit report of same in printed form. Project 1 is compulsory and students have to select any one from project 2 and 3.	
Ι	Design of Industrial shed for different location of the India It includes Analysis and Design of truss. Analysis and Design of gantry girder. Analysis and Design of bracket, Analysis and Design of column. Analysis and Design of Column bases. Analysis and Design of bracings, one full imperial drawing sheet on above design using Auto cad Software	24
II	Design of welded plate girder and its end connections, one full imperial drawing sheet on above design using Auto cad Software	12
III	Design of G+1 Steel Building frame One full imperial drawing sheets on above design using Auto cad Software. Students must analyze and design any one project using relevant software	12
	like STADD Pro, ETABS, SAP 2000 and ANSYS etc	

	Laboratory Work					
1	1. Calculation of loads and load combinations for the truss					
	2. Analysis of truss using any finite element tool					
	3. Design of truss members					
	4. Analysis and Design of Gantry girder					
	5. Analysis and Design of Bracket					
	6. Analysis and Design of Column					
	7. Analysis and Design of Column bases					
	8. Detailing of truss joint and other elements in AutoCAD					
	9. Preparation of detailed drawings					
	10. Preparation of Spiral Report.					
	Text Books					
1	Dr. M. R. Shiyekar, Limit state design in structural steel, PHI publications.					
2	S.S. Bhavikatti, Design of steel structure by Limit State Method as per IS: 800-					
	2007, I K International Publishing House, New Delhi.					
	References					
1						
l	K.S. Sairam, Design of Steel Structures, Pearson					
2	S.K. Duggal, Limit State Design of Steel Structures, Tata Mc-Graw Hill					
	India Publishing House					
3	N.Subramanian, Design of steel structures, Oxford University Press					
4	S. Ramamrutham, Design of Steel structures, Dhanapat Rai, Publication					

School of Technology Department of Civil Engineering Program: T.Y.B. Tech. Civil Engineering

Sanjay Ghodawat University, Kolhapur Established as a State Private University under Govt. of Maharashtra Act no. XL dated 3rd May 2017 Empowering Lives Globally !

Program Elective II

Course Code

UCE651

Sanjay Ghodawat University, Kolhapur Established as a State Private University under Govt. of Maharashtra Act no. XL dated 3rd May 2017 Empowering Lives Globally !

Course Title

Advanced Fluid Mechanics

(Program Elective | School of Technology)

L	т	р	Cradits		Evalua	tion Schem	ie	
		1	Creans	Component	Exam	WT (%)	Mini.	Passing %
2			2	Theory	FA	50	40%	400/
3	-	-	3	and Practical	SA	50	40%	40%

Course Description:

Advanced fluid mechanics deals with knowledge of in depth study of Kinematics of Flow, Boundary Layer Theory and compressible flow. Fluid statics will be dealt with detail.

Course Learning Outcome(s)			
At the e	At the end of this course students will able to:		
CLO1	Recognize² the basics of fluid mechanics Discuss⁴ kinematics of fluid flow		
CLO2	Discuss ² concept of conformal mapping		
CLO3	Discuss ² boundary behavior		
CLO4	Explain ² and Discuss ⁴ compressible flow concept		

UNIT	DESCRIPTION	HOURS
Ι	Classification of flows, Equation of continuity for three-dimensional flow in Cartesian	6
	co- ordinates, equation of continuity for one-dimensional flow along a streamline, types	
	of motion, rotational and irrotational motion, velocity potential, stream function and flow	
	net, Euler's equation of motion along a streamline and its integration, Bernoulli's	
	equation	
II	Kinematics of Flow: Continuity Equation in polar and cylindrical coordinates,	6
	solving laplace's equation by graphical & relaxation method	
III	Laminar Flow: Navier strokes equation-derivation, exact flow between parallel	6
	plates-it's exact solution. Flow near an oscillating plate & suddenly accelerated	

	plate.	
IV	Turbulent Flow: Reynold's equation of motion, typical solution, Energy and	6
	Momentum equation, Statistical theory of turbulence, Isotropic and homogeneous	
	turbulence, probability density flow	
V	Boundary Layer Theory: Development of boundary layer on a flat plate	6
	nominal, displacement, momentum, energy thicknesses, laminar, transitional and	
	turbulent boundary layer, laminar sub layer, Local and mean drag coefficients.	
	Karman's momentum integral equation, Karman Pohlhausen's solution,	
	Boundary layer separation	
VI	Compressible Flows: Speed of sound and Mach number, Basic equations for one	6
	dimensional flows, Isentropic relations, Normal-shock wave, Rankine-Hugoniot	
	relations, Fanno and Rayleigh curve, Mach waves.	

	Laboratory Work
1	One assignment on each unit.
	Text Books
1	Modi. P. M. and Seth S. N., "Fluid mechanics & hydraulics", 10 th Edition, Standard Publications (2015).
2	R. K. Bansal, "Fluid mechanics & hydraulics", 14 th Edition, Khanna publications (2009).
	References
1	Fluid Mechanics – A.K. Jain – Khanna Pub., Delhi
2	John D.Anderson Jr, Modern Compressible Flow with Historical Perspective, McGraw-
	Hill, 1990.
3	Fluid Mechanics – S. Nagrathanam – Khanna Pub., Delhi
4	Fluid Mechanics through Problems – Garde R. J.
5	Fundamentals of Fluid Mechanics, Munson, Young, Okiishi, Huebesch, Wiley Publication

UCE653 Site Investigation and Soil Explorat	ion
(Program Elective School of Technology)	

L	Т	Р	Credits	Evaluation Scheme				
				Component	Exam	WT (%)	Mini.	Passing %
3	-	2	4	Theory	FA	50	40%	400/
				and Practical	SA	50	40%	40%

Course Description:		
This course intends to provide students a comprehensive knowledge on Geotechnical		
Exploration & Investigations. The course focuses the methods of exploration, instrumentation		
required for exploration. The course also focuses on the report writing aspects of the		
geotechnical exploration. This course is important, as geotechnical investigation is an important		
form of any Civil engineering project.		

Course Learning Outcome(s)		
At the end of this course students will able to:		
CLO1	Explain ² importance of geotechnical exploration	
CLO2	Explain ² principles of exploration and site investigations	
CLO3	Describe ² various field techniques used in geotechnical engineering for ascertaining the nature and behavior of soil strata	
CLO4	Perform² geotechnical exploration at various sites & prepare detailed site investigation report	

DESCRIPTION	HOURS
Importance and objectives of Geotechnical exploration, Principal methods of	6
subsurface exploration, open pits and shafts. Types of borings, selection depth of	
boring for different structures, and for different nature of ground profile	
	DESCRIPTION Importance and objectives of Geotechnical exploration, Principal methods of subsurface exploration, open pits and shafts. Types of borings, selection depth of boring for different structures, and for different nature of ground profile

II	Planning of subsurface exploration program for major civil engineering project,	6
	Indirect methods of exploration (Seismic refraction method, electrical resistivity	
	method), qualitative and quantitative interpretation of test results, advantages,	
	limitations and criteria for selection of method for investigation	
III	Types of soil samples & their suitability, precautions in sampling, parameters for	6
	sampler design, boring and sampling records handling, preservation & shipment of	
	samples, underwater sampling	
IV	Standard Penetration test, Plate load test (PLT), field vane shear test, Technical	6
	Report writing, report format, recommendations	
V	Bearing capacity: - ultimate bearing capacity, safe bearing capacity and allowable	6
	bearing pressure - general and local shear failure - Terzaghi's theory of bearing	
	capacity – effect of water table - plate load test – limitations.	
VI	Deep foundations: - Pile foundation – necessity of pile foundation – classification	6
	of piles according to materials, mode of transfer of loads, method of installation, use	
	and displacement of soil. Well foundations/caissons - shapes of wells and	
	component parts – well sinking – tilts and shifts – measures for rectification of tilts	
	and shifts.	

	Laboratory Work
1	One assignment on each unit.
	Text Books
1	Basic and Applied soil mechanics: Gopal Ranjan & A.S. Rao, New Edge International
	Ltd., (2004)
	References
1	Site Investigation Practice, Joyce, M.D ESFN. SPON Publishers, 1982.

2	Basic and Applied soil mechanics: Gopal Ranjan & A.S. Rao, New Edge
	International Ltd., (2004)
3	Foundation Analysis & Design: Bowles, J.E., McGraw Hill (1996)
4	Site investigation by Clayton, Mathews and Simons
5	Surveying: Theory and Practice by James M. Anderson, Edward M. Mikhail, Tata
	McGraw Hill.